A lower bound on the independence number of a graph

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A lower bound on the independence number of a graph

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

متن کامل

A New Lower Bound on the Independence Number of a Graph and Applications

The independence number of a graph G, denoted α(G), is the maximum cardinality of an independent set of vertices in G. The independence number is one of the most fundamental and well-studied graph parameters. In this paper, we strengthen a result of Fajtlowicz [Combinatorica 4 (1984), 35–38] on the independence of a graph given its maximum degree and maximum clique size. As a consequence of our...

متن کامل

A new lower bound on the independence number of a graph

For a given connected graph G on n vertices and m edges, we prove that its independence number α(G) is at least ((2m+n+2)-((2m+n+2) 2-16n 2) ½)/8. Intoduction Let G=(V,E) be a connected graph G on n=│V│ vertices and m=│E│ edges. For a subgraph H of G and for a vertex i∈V(H), let d H (i) be the degree of i in H and let N H (i) be its neighbourhood in H. Let δ(H) and ∆(H) be the minimum degree an...

متن کامل

A new lower bound on the independence number of graphs

We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e.g. [12]). We obtain our bound by using the Bhatia-Davis inequality applied with analytical results (minimum, maximum, expectation and variance) of an algorithm for the vertex cover problem.

متن کامل

A lower bound on the independence number of arbitrary hypergraphs

We present a lower bound on the independence number of arbitrary hypergraphs in terms of the degree vectors. The degree vector of a vertex v is given by d(v) = (d 1 (v); d 2 (v); : : :) where d m (v) is the number of edges of size m containing v. We deene a function f with the property that any hypergraph H = (V; E) satisses (H) P v2V f(d(v)). This lower bound is sharp when H is a matching, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(98)00048-x